Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int Immunol ; 36(5): 241-256, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38153198

RESUMEN

Multiple sclerosis (MS) is an incurable chronic autoimmune disease affecting the central nervous system (CNS). Although IL-17-producing helper T (Th17) cells are thought to be one of the exacerbating factors in MS, the underlying pathogenic mechanism is incompletely understood. TNF receptor-associated factor 6 (TRAF6) deficient T cells exhibited enhanced Th17 cell differentiation, however, the physiological relevance of TRAF6 in T cells remains unknown. Here, we induced experimental autoimmune encephalomyelitis (EAE) in T cell-specific TRAF6 deficient (TRAF6ΔT) mice to investigate the role of TRAF6 in T cells during the course of MS using an EAE model. Although Th17 cell differentiation was enhanced in TRAF6ΔT mice, mutant mice were resistant to EAE. In contrast, TRAF6 loss did not affect regulatory T-cell differentiation. Consistent with the severity of EAE, a small number of infiltrating T cells and a small area of demyelination were observed in the CNS of TRAF6ΔT mice. Moreover, myelin oligodendrocyte glycoprotein-induced IL-17 production in TRAF6-deficient T cells was significantly suppressed. We further confirmed lower levels of CD69 and granulocyte-macrophage colony-stimulating factor in Th17 cells of TRAF6ΔT mice than in wild-type mice. In contrast, the expression of IL-10 and cytotoxic T-lymphocyte-associated protein 4 in T cells was significantly elevated in the absence of TRAF6 because of enhanced T-cell receptor signaling. Collectively, TRAF6 signaling in T cells contributes to the pathogenesis of EAE by regulating the pathogenicity and autoantigen reactivity of Th17 cells.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Interleucina-17/metabolismo , Ratones Endogámicos C57BL , Células Th17 , Factor 6 Asociado a Receptor de TNF/metabolismo
2.
Biochem Biophys Res Commun ; 669: 103-112, 2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37269592

RESUMEN

Tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role in the induction of inflammatory responses not only in innate immune cells but also in non-immune cells, leading to the activation of adaptive immunity. Signal transduction mediated by TRAF6, along with its upstream molecule MyD88 in intestinal epithelial cells (IECs) is crucial for the maintenance of mucosal homeostasis following inflammatory insult. The IEC-specific TRAF6-deficient (TRAF6ΔIEC) and MyD88-deficient (MyD88ΔIEC) mice exhibit increased susceptibility to DSS-induced colitis, emphasizing the critical role of this pathway. Moreover, MyD88 also plays a protective role in Citrobacter rodentium (C. rodentium) infection-induced colitis. However, its pathological role of TRAF6 in infectious colitis remains unclear. To investigate the site-specific roles of TRAF6 in response to enteric bacterial pathogens, we infected TRAF6ΔIEC and dendritic cell (DC)-specific TRAF6-deficient (TRAF6ΔDC) mice with C. rodentium and found that the pathology of infectious colitis was exacerbated with significantly decreased survival rates in TRAF6ΔDC mice, but not in TRAF6ΔIEC mice, compared to those in control mice. TRAF6ΔDC mice showed increased bacterial burdens, marked disruption of epithelial and mucosal structures with increased infiltration of neutrophils and macrophages, and elevated cytokine levels in the colon at the late stages of infection. The frequencies of IFN-γ producing Th1 cells and IL-17A producing Th17 cells in the colonic lamina propria were significantly reduced in TRAF6ΔDC mice. Finally, we demonstrated that TRAF6-deficient DCs failed to produce IL-12 and IL-23 in response to C. rodentium stimulation, and to induce both Th1 and Th17 cells in vitro. Thus, TRAF6 signaling in DCs, but not in IECs, protects against colitis induced by C. rodentium infection by producing IL-12 and IL-23 that induce Th1 and Th17 responses in the gut.


Asunto(s)
Citrobacter rodentium , Colitis , Animales , Ratones , Citrobacter rodentium/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Células Th17 , Colitis/patología , Transducción de Señal , Mucosa Intestinal/metabolismo , Colon/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Ratones Endogámicos C57BL , Células TH1/metabolismo
3.
Genes Cells ; 28(4): 267-276, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36641236

RESUMEN

Although excessive immune responses by Th17 cells, a helper T cell subset, are implicated in the pathogenesis of inflammatory bowel disease (IBD), the mechanism by which its localization in an inflamed colon is regulated remains unclear. Chemokines and their receptors are involved in the pathogenesis of IBD, however, the relative significance of each receptor on Th17 cells remains unknown. We generated C-C motif chemokine receptor 2 (CCR2) knockout (KO) and CCR6 KO mice in the syngeneic background using the CRISPR/Cas9 system and found that the phenotypes of experimental colitis worsened in both mutant mice. Surprisingly, the phenotype of colitis in CCR2/CCR6-double knockout (CCR2/6 DKO) mice was opposite to that of the single-deficient mice, with significantly milder experimental colitis (p < .05). The same was true for the symptoms in CCR6 KO mice, but not in wild type mice treated with a CCR2 inhibitor, propagermanium. Colonic CCR2+ CCR6+ Th17 cells produced a potentially pathogenic cytokine GM-CSF whose levels in the gut were significantly reduced in CCR2/6 DKO mice (p < .05). These results suggest that GM-CSF-producing CCR2+ CCR6+ Th17 cells are pathogenic and are attracted to the inflamed colon by either CCR2 or CCR6 gradient, which subsequently exacerbates experimental colitis in mice.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Células Th17/metabolismo , Células Th17/patología , Dextranos/efectos adversos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/efectos adversos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Colitis/inducido químicamente , Colitis/genética , Quimiocinas/efectos adversos , Ratones Noqueados , Ratones Endogámicos C57BL , Receptores CCR6/genética , Receptores CCR2/genética
4.
Biochem Biophys Res Commun ; 641: 123-131, 2023 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-36527746

RESUMEN

Multiple sclerosis is an autoimmune disease in which the immune system attacks the nerve myelin sheath. The balance between pathogenic Th17 cells and regulatory Treg cells, both of which express the chemokine receptor CCR6 is critical for determining disease activity. It has been postulated that CCL20, the cognate ligand of CCR6, produced by the blood-brain barrier attracts these immune cells to the central nervous system (CNS). However, the pathological phenotypes of the experimental model of multiple sclerosis in CCR6-knockout (KO) mice are inconclusive, while this has not been addressed in CCL20-KO mice. To address this, we generated CCL20-KO and CCR6-KO mice using the CRISPR/Cas9 system. Clinical phenotypes of experimental autoimmune encephalomyelitis (EAE) in the chronic phase were slightly exacerbated in both mutant mice relative to those in wild-type (WT) mice. Inflammatory cell infiltration and demyelination in the CNS were similar in the KO and WT mice. CNS CD4+ T cell counts were the same for mutant and WT mice. The mutant and WT mice did not differ significantly in the proportions of Th17 and Treg cells in the CNS, or in IL-17 and TGF-ß mRNA expression in the CNS. These findings suggest that CCL20/CCR6-mediated cell migration is not necessarily required for the onset of EAE, and may be compensated for by other chemokine signals.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Sistema Nervioso Central/metabolismo , Quimiocinas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/patología , Receptores CCR6/genética , Receptores CCR6/metabolismo
5.
PLoS One ; 17(6): e0269698, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35704618

RESUMEN

Antibiotics disrupt normal gut microbiota and cause dysbiosis, leading to a reduction in intestinal epithelial barrier function. Disruption of the intestinal epithelial barrier, which is known as "leaky gut", results in increased intestinal permeability and contributes to the development or exacerbation of gastrointestinal diseases such as inflammatory bowel disease and irritable bowel syndrome. We have previously reported on a murine model of intestinal epithelial barrier dysfunction associated with dysbiosis induced by the administration of ampicillin and vancomycin. Saireito, a traditional Japanese herbal medicine, is often used to treat autoimmune disorders including ulcerative colitis; the possible mechanism of action and its efficacy, however, remains unclear. In this study, we examined the efficacy of Saireito in our animal model for leaky gut associated with dysbiosis. C57BL/6 mice were fed a Saireito diet for the entirety of the protocol (day1-28). To induce colitis, ampicillin and vancomycin were administered in drinking water for the last seven consecutive days (day22-28). As previously demonstrated, treatment with antibiotics caused fecal occult bleeding, cecum enlargement with black discoloration, colon inflammation with epithelial cell apoptosis, and upregulation of pro-inflammatory cytokines. Oral administration of Saireito significantly improved antibiotics-induced fecal occult bleeding and cecum enlargement by suppressing inflammation in the colon. Furthermore, Saireito treatment ensured the integrity of the intestinal epithelial barrier by suppressing apoptosis and inducing cell adhesion proteins including ZO-1, occludin, and E-cadherin in intestinal epithelial cells, which in turn decreased intestinal epithelial permeability. Moreover, the reduced microbial diversity seen in the gut of mice treated with antibiotics was remarkably improved with the administration of Saireito. In addition, Saireito altered the composition of gut microbiota in these mice. These results suggest that Saireito alleviates leaky gut caused by antibiotic-induced dysbiosis. Our findings provide a potentially new therapeutic strategy for antibiotic-related gastrointestinal disorders.


Asunto(s)
Colitis Ulcerosa , Colitis , Ampicilina/metabolismo , Animales , Antibacterianos , Colitis/metabolismo , Colitis Ulcerosa/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Disbiosis/inducido químicamente , Disbiosis/tratamiento farmacológico , Disbiosis/metabolismo , Medicina de Hierbas , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Japón , Ratones , Ratones Endogámicos C57BL , Vancomicina/efectos adversos
6.
Biochem Biophys Res Commun ; 613: 26-33, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35526485

RESUMEN

CD8+ cytotoxic T lymphocytes (CTLs) and CD4+ helper T (Th) cells play a critical role in protective immune responses to tumor cells. Particularly, Th9 cells exert anti-tumor activity by producing IL-9. TNF receptor (TNFR)-associated factor 6 (TRAF6) is an adaptor protein that mediates the signals from both the TNFR superfamily and Toll-like receptors (TLRs). We have previously reported that T cell-specific TRAF6-deficent (TRAF6ΔT) mice spontaneously developed systemic inflammatory diseases. However, the physiological role of TRAF6 in T cells in controlling anti-tumor immune responses remains largely unclear. Here, we found that tumor formation of syngeneic colon cancer cells inoculated in TRAF6ΔT mice was accelerated compared to that in control mice. Although TRAF6-deficient naïve T cells showed enhanced differentiation of Th9 cells in vitro, these T cells produced lower amounts of IL-9 in response to a specific antigen. Moreover, CD4+ tumor-infiltrating lymphocytes (TILs) in tumor-bearing TRAF6ΔT mice expressed lower levels of IL-9 than those in WT mice. Importantly, administration of recombinant IL-9 (rIL-9) strongly suppressed tumor progression in TRAF6ΔT mice. Furthermore, expression levels of the T-box transcription factor Eomesodermin (Eomes) and its target molecules IFN-γ, granzyme B and perforin, as well as cytotoxic activity, were reduced in TRAF6-deficient CD8+ T cells in vitro. TRAF6-deficient T cells were found to express significantly increased levels of immune checkpoint molecules, CTLA-4 and PD-1 on the cell surface. These results demonstrate that the TRAF6 signaling pathway in T cells regulates anti-tumor immunity through the activation of tumor specific Th9 cells and CTLs in a tumor microenvironment.


Asunto(s)
Linfocitos T Citotóxicos , Factor 6 Asociado a Receptor de TNF , Animales , Interleucina-9/inmunología , Interleucina-9/farmacología , Ratones , Proteínas Recombinantes/farmacología , Transducción de Señal/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Factor 6 Asociado a Receptor de TNF/inmunología
7.
Genes Cells ; 27(7): 493-504, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35485445

RESUMEN

Lipid mediators are known to play crucial roles not only in the onset of the inflammatory response but also in the induction of resolution of inflammation. Here, we report that palmitoylethanolamide (PEA), an endogenous N-acylethanolamine, can suppress the inflammation induced by Toll-like receptor (TLR) signaling both in vitro and in vivo. PEA was found to be significantly reduced in the serum and spleen of lupus-prone MRL/lpr mice analyzed by lipidomics. PEA suppressed pro-inflammatory cytokine production in a mouse macrophage cell line stimulated with TLR ligands such as lipopolysaccharide, peptidoglycan, poly (I:C), imiquimod, and CpG-ODN. PEA also inhibited both mRNA and protein levels of IL-6 in bone marrow-derived dendritic cells (BMDCs) and B cells stimulated with CpG-ODN. Augmentation of cell surface CD86 and CD40 on BMDCs and B cells, IgM production, and cell proliferation of B cells in response to CpG-ODN were attenuated by PEA. Moreover, PEA treatment significantly reduced mortality and serum IL-6 levels in mice injected with CpG-ODN plus D-galactosamine. Taken together, PEA ameliorates inflammation induced by TLR signaling, which could be a novel therapeutic target for inflammatory disorders.


Asunto(s)
Interleucina-6 , Receptor Toll-Like 9 , Amidas , Animales , Cromatografía Liquida , Etanolaminas , Inflamación/tratamiento farmacológico , Interleucina-6/metabolismo , Lipidómica , Ratones , Ratones Endogámicos MRL lpr , Ácidos Palmíticos , Espectrometría de Masas en Tándem , Receptores Toll-Like
8.
Medicine (Baltimore) ; 101(2): e28471, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35029194

RESUMEN

RATIONALE: In response to the global coronavirus infectious disease 2019 (COVID-19) pandemic, several vaccines against severe acute respiratory syndrome coronavirus 2 have been developed. Although many infrequent side effects of COVID-19 mRNA vaccine have been reported, only a few cases of pancreatitis have been reported. PATIENT CONCERNS: A 71-year-old woman was presented to the hospital with upper abdominal pain and vomiting. She had no history of alcohol consumption, pancreatitis, or allergic reactions to vaccines. She had received the first dose of the Pfizer/BioNTech COVID-19 mRNA vaccine 2 days prior to her current presentation. Laboratory tests revealed elevated serum pancreatic enzymes. An abdominal computed tomography scan showed diffuse enlargement of the pancreas with fat stranding extending to below the kidneys bilaterally. DIAGNOSIS: The patient was diagnosed with acute pancreatitis. INTERVENTIONS: The patient was treated with the administration of intravenous antimicrobials, proteolytic enzyme inhibitors, and proton pump inhibitors. OUTCOMES: The patient had an uneventful recovery with no complications. LESSONS: Acute pancreatitis can develop shortly after COVID-19 mRNA vaccination. Therefore, of great importance to differentiate acute pancreatitis when abdominal pain occurs after COVID-19 mRNA vaccination.


Asunto(s)
Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , Pancreatitis/inducido químicamente , Dolor Abdominal/etiología , Enfermedad Aguda , Anciano , Vacunas contra la COVID-19/administración & dosificación , Femenino , Humanos , Pancreatitis/diagnóstico , ARN Mensajero/genética , SARS-CoV-2 , Vacunación/efectos adversos , Vacunas Sintéticas , Vacunas de ARNm
9.
World J Gastroenterol ; 27(38): 6501-6510, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34720538

RESUMEN

BACKGROUND: Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) is a rare primary intestinal T-cell lymphoma, previously known as enteropathy-associated T-cell lymphoma type II. MEITL is an aggressive T-cell lymphoma with a poor prognosis and high mortality rate. The known major complications of MEITL are intestinal perforation and obstruction. Here, we present a case of MEITL that was diagnosed following upper gastrointestinal bleeding from an ulcerative duodenal lesion, with recurrence-free survival for 5 years. CASE SUMMARY: A 68-year-old female was admitted to our hospital with melena and mild anemia. An urgent esophagogastroduodenoscopy (EGD) revealed bleeding from an ulcerative lesion in the transverse part of the duodenum, for which hemostatic treatment was performed. MEITL was diagnosed following repeated biopsies of the lesion, and cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) chemotherapy was administered. She achieved complete remission after eight full cycles of CHOP therapy. At the last follow-up examination, EGD revealed a scarred ulcer and 18Fluorodeoxyglucose (18FDG) positron emission tomography/computed tomography showed no abnormal FDG accumulation. The patient has been in complete remission for 68 mo after initial diagnosis. CONCLUSION: To rule out MEITL, it is important to carefully perform histological examination when bleeding from a duodenal ulcer is observed.


Asunto(s)
Linfoma de Células T Asociado a Enteropatía , Linfoma de Células T , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biopsia , Ciclofosfamida/uso terapéutico , Doxorrubicina/uso terapéutico , Femenino , Humanos , Melena/etiología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Vincristina/uso terapéutico
10.
Genes Cells ; 26(10): 807-822, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34379860

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestine, and the dysfunction of intestinal epithelial barrier (IEB) may trigger the onset of IBD. Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that has been implicated in the tissue-protective effect in the skin and lung. We found that SLPI was induced in lipopolysaccharides-treated colon carcinoma cell line and in the colon of dextran sulfate sodium (DSS)-treated mice. SLPI-deficient mice were administered DSS to induce colitis and sustained severe inflammation compared with wild-type mice. The colonic mucosa of SLPI-deficient mice showed more severe inflammation with neutrophil infiltration and higher levels of proinflammatory cytokines compared with control mice. Moreover, neutrophil elastase (NE) activity in SLPI-deficient mice was increased and IEB function was severely impaired in the colon, accompanied with the increased number of apoptotic cells. Importantly, we demonstrated that DSS-induced colitis was ameliorated by administration of protease inhibitor SSR69071 and recombinant SLPI. These results suggest that the protease inhibitory activity of SLPI protects from colitis by preventing IEB dysfunction caused by excessive NE activity, which provides insight into the novel function of SLPI in the regulation of gut homeostasis and therapeutic approaches for IBD.


Asunto(s)
Colitis , Inhibidor Secretorio de Peptidasas Leucocitarias , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Mucosa Intestinal , Ratones , Inhibidor Secretorio de Peptidasas Leucocitarias/genética , Inhibidores de Serina Proteinasa
11.
Jpn J Infect Dis ; 74(5): 387-391, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-33518625

RESUMEN

Anisakidosis is developed by ingesting Anisakis in marine fish, including the chub mackerel, Scomber japonicus, without proper pre-treatment such as cooking or freezing. Two sibling species of Anisakis are found in S. japonicus from Japanese waters, and the prevalence and species of Anisakis in the fish depend on the sea area. For example, Anisakis simplex sensu stricto (s.s.) is found in the Pacific stock of S. japonicus, whereas A. pegreffii is found in the Tsushima Warm Current stock. S.japonicus caught in the Bungo Channel, off the coast of Saganoseki in Oita Prefecture, which is branded as Sekisaba, inhabits a very limited area; however, the infection states of Anisakis found in Sekisaba remain unclear. In this study, we compared the infection states of Anisakis in Sekisaba with those in S. japonicus caught in the South Oita area and Nagasaki Prefecture. All Anisakis from the Nagasaki Prefecture were A. pegreffii, while most of them found in Sekisaba and fish from the South Oita area were A. simplex s.s. Interestingly, the prevalence of Anisakis in Sekisaba was significantly lower than that in the other two areas. This may reflect the fact that Sekisaba might belong to a distinct stock of S. japonicus, varying from other stocks.


Asunto(s)
Anisakiasis/epidemiología , Anisakis/genética , Enfermedades de los Peces/epidemiología , Perciformes , Animales , Anisakiasis/veterinaria , Anisakis/aislamiento & purificación , Japón/epidemiología , Larva , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Prevalencia
12.
Genes Cells ; 25(9): 615-625, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32562326

RESUMEN

Chikungunya fever is a mosquito-borne disease cause of persistent arthralgia. The current diagnosis of Chikungunya virus (CHIKV) relies on a conventional reverse transcription polymerase chain reaction assay. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a rapid and simple tool used for DNA-based diagnosis of a variety of infectious diseases. In this study, we established an RT-LAMP system to recognize CHIKV by targeting the envelope protein 1 (E1) gene that could also detect CHIKV at a concentration of 8 PFU without incorrectly detecting other mosquito-borne viruses. The system also amplified the E1 genome in the serum of CHIKV-infected mice with high sensitivity and specificity. Moreover, we established a dry RT-LAMP system that can be transported without a cold chain, which detected the virus genome in CHIKV-infected patient samples with high accuracy. Thus, the dry RT-LAMP system has great potential to be applied as a novel CHIKV screening kit in endemic areas.


Asunto(s)
Virus Chikungunya/aislamiento & purificación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Animales , Células Cultivadas , Virus Chikungunya/genética , Análisis Costo-Beneficio , Genoma Viral , Humanos , Masculino , Ratones , Técnicas de Diagnóstico Molecular/economía , Técnicas de Amplificación de Ácido Nucleico/economía , Transcripción Reversa , Proteínas del Envoltorio Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...